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Magnetic resonance imaging-based
hippocampus volume for prediction of
dementia in mild cognitive impairment: Why
does the measurement method matter so little?
Magnetic resonance imaging (MRI)-based hippocampus
volume (HV) is the best established imaging marker to
support the prediction of AD dementia (ADD) in mild
cognitive impairment (MCI), although its utility in clinical
patient care has not yet been fully demonstrated [1,2]. HV
can be scored on an ordinal scale based on visual
inspection of MRI [3], or it can be estimated quantitatively
by manual or automatic delineation of the hippocampus in
MRI. While visual scoring tends to perform worse in
MCI-to-ADD prediction, manual delineation and automatic
methods show very similar performance [4]. Furthermore,
there is hardly any difference among the numerous
automatic methods with respect to predictive power in
MCI. In the head-to-head comparison of four HV
measurement methods in MCI subjects of the Alzheimer’s
Disease Neuroimaging Initiative by the EuropeanMedicines
Agency, the area (AUC) under the receiver operating
characteristic (ROC) curve for 2-year prediction of ADD
ranged between 0.7290 and 0.7565, and among three of
the four methods, the AUC ranged between 0.7516 and
0.7565 [5]. This appears surprising at first sight given that
the quantitative methods differ strongly in accuracy and
precision with respect to the anatomical delineation of the
hippocampus. Time spent by the rater and computer
processing time also differ strongly [4]. Here, we aim to
provide a simple mathematical explanation of the stability
of the performance of MRI-based HV in MCI with respect
to the HV measurement method.

Let us assume that the true, error-free HV follows a
Gaussian distribution in both MCI stable subjects and in
MCI-to-ADD progressors:
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where N(m,s2) is the Gaussian with mean m and variance
s2. The difference mS 2 mP describes the biological
difference of the true HV between MCI stables and
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MCI-to-ADD progressors, the variance s2 describes the
(patho)physiological variability of the true HV between
subjects.

The ROC curve for prediction of MCI-to-ADD progres-
sion is obtained by plotting the true positive rate q versus
the false positive rate p for all possible thresholds c, where
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and F is the standard normal cumulative distribution func-
tion [6]. The AUC is given by [6].
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To start with, let us assume

mS 5 3:0 ml
mP 5 2:7 ml

sS 5 sP 5 strue 5 0:3 ml
(4)

The AUC of MCI-to-ADD prediction by the true HV is
0.7602 in this scenario (Fig. 1A), close to the European
Medicines Agency results cited previously.

Now let us consider HV estimates obtained by a given
measurement method. The measurement process causes mea-
surement errors that result in additional intersubject variability
(a systematic offset of the HVestimates can be accounted for
by linear transformation). Let us model this additional vari-
ability by a Gaussian with mean zero and variance s2meas.
The measured HV estimates than follow the same Gaussian
distribution as the true HV but with increased variance

s2
est 5 s2

true 1 s2
meas (5)

The red curve in Fig. 1B shows the AUC for prediction of
MCI-to-ADD progression by HV estimates as function of
smeas (scaled to mS 2 mP). The additional variability by the
measurement error causes only mild AUC decrease. Even
when the standard deviation of the measurement error
reaches the difference mS 2 mP of mean true HV between
MCI stables and MCI-to-ADD progressors, the AUC only
slightly decreases to 0.6915 (from AUC 5 0.7602 with
true, error-free HV), which still lies within the typically
observed performance range.
ghts reserved.

mailto:r.buchert@uke.de
https://doi.org/10.1016/j.jalz.2018.03.006


Fig. 1. Part (A) shows the ROC curve for MCI-to-ADD prediction by the true, error-free HVassumed to follow Gaussian distributions according to (4). Part (B)

illustrates the deterioration of predictive performance (as measured by the decline of the area AUC under the ROC curve) by additional intersubject variability

due to measurement errors smeas of HVestimates. The red curve shows the impact of the additional variability on the performance of the true HVaccording to

part (A). The other curves show the impact of measurement error when the true, error-free HV would perform better (actual biological group difference

Dtrue . 1) or worse (Dtrue , 1) than assumed in part (A). Abbreviations: HV, hippocampus volume; ADD, AD dementia; AUC, area under the ROC curve;

MCI, mild cognitive imapairment.
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To assess the impact of additional variance s2meas on the
prognostic performance also for other biological scenarios,
strue was varied whereas mS and mP were kept constant at
the values in (4). Biological scenarios were labeled by the
actual biological group difference scaled to the actual
(patho)physiological variance Dtrue 5 (mS 2 mP)/strue

(Fig. 1B). It is evident from Fig. 1B that the impact of the
additional variance caused by the measurement process
decreases with decreasing biological group difference. The
lower the initial AUC, the flatter the decline of the AUC
with increasing measurement error. This suggests that the
stability of the predictive power of MRI-based HV in MCI
with respect to the measurement method is a floor effect:
even with the best measurement method, the power of
MRI-based HV to predict MCI-to-ADD progression is
inherently limited by the predictive properties of
hippocampal atrophy. Thus, further decreasing HV
measurement error compared with existing methods will
have only very little impact on the predictive accuracy of
hippocampus volumetry. To make HV widely available for
routine clinical use, the measurement method should
combine ease of use and short computation time with
acceptable accuracy and precision. Efforts to harmonize
HV measurement in the context of AD might account for
this [7]. Furthermore, integrating existing HV volumetry
methods in multivariable models rather than increasing
HV measurement accuracy will be most efficient to make
the best use of MRI-based HV as prognostic marker in
MCI. Finally, hippocampal atrophy is not homogeneous
across hippocampal subfields, suggesting that MRI-based
volume measures of specific hippocampal subfields might
provide better predictive power compared with the entire
hippocampus [8].
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Paris, France

Michel J. Grothe
German Center for Neurodegenerative Diseases (DZNE)

Rostock, Germany
References

[1] Bosco P, Redolfi A, Bocchetta M, Ferrari C, Mega A, Galluzzi S, et al.

The impact of automated hippocampal volumetry on diagnostic

confidence in patients with suspected Alzheimer’s disease: a European

Alzheimer’s Disease Consortium study. Alzheimers Dement 2017;

13:1013–23.

[2] TenKateM, Barkhof F, BoccardiM, Visser PJ, Jack CR Jr, Lovblad KO,

et al. Geneva Task Force for the Roadmap of Alzheimer’s Biomarkers.

Clinical validity of medial temporal atrophy as a biomarker for

Alzheimer’s disease in the context of a structured 5-phase development

framework. Neurobiol Aging 2017;52:167–182.e1.
[3] Scheltens P, Leys D, Barkhof F, Huglo D, Weinstein HC,

Vermersch P, et al. Atrophy of medial temporal lobes on MRI in

"probable" Alzheimer’s disease and normal ageing: diagnostic value

and neuropsychological correlates. J Neurol Neurosurg Psychiatry

1992;55:967–72.

[4] Clerx L, van Rossum IA, Burns L, Knol DL, Scheltens P, Verhey F, et al.

Measurements of medial temporal lobe atrophy for prediction of

Alzheimer’s disease in subjects with mild cognitive impairment.

Neurobiol Aging 2013;34:2003–13.

[5] Hill DLG, Schwarz AJ, Isaac M, Pani L, Vamvakas S, Hemmings R,

et al. Coalition Against Major Diseases/European Medicines Agency

biomarker qualification of hippocampal volume for enrichment of

clinical trials in predementia stages of Alzheimer’s disease. Alzheimers

Dement 2014;10:421–9.

[6] Faraggi D, Reiser B. Estimation of the area under the ROC curve. Stat

Med 2002;21:3093–106.

[7] Wolf D, Bocchetta M, Preboske GM, Boccardi M, Grothe MJ, for the

Alzheimer’s Disease Neuroimaging Initiative. Reference standard

space hippocampus labels according to the European Alzheimer’s

Disease Consortium-Alzheimer’s Disease Neuroimaging Initiative

harmonized protocol: utility in automated volumetry. Alzheimers

Dement 2017;13:893–902.

[8] Carlesimo GA, Piras F, Orfei MD, Iorio M, Caltagirone C, Spalletta G.

Atrophy of presubiculum and subiculum is the earliest hippocampal

anatomical marker of Alzheimer’s disease. Alzheimers Dement

(Amst) 2015;1:24–32.

https://doi.org/10.1016/j.jalz.2018.03.006

http://refhub.elsevier.com/S1552-5260(18)30099-2/sref1
http://refhub.elsevier.com/S1552-5260(18)30099-2/sref1
http://refhub.elsevier.com/S1552-5260(18)30099-2/sref1
http://refhub.elsevier.com/S1552-5260(18)30099-2/sref1
http://refhub.elsevier.com/S1552-5260(18)30099-2/sref1
http://refhub.elsevier.com/S1552-5260(18)30099-2/sref2
http://refhub.elsevier.com/S1552-5260(18)30099-2/sref2
http://refhub.elsevier.com/S1552-5260(18)30099-2/sref2
http://refhub.elsevier.com/S1552-5260(18)30099-2/sref2
http://refhub.elsevier.com/S1552-5260(18)30099-2/sref2
http://refhub.elsevier.com/S1552-5260(18)30099-2/sref3
http://refhub.elsevier.com/S1552-5260(18)30099-2/sref3
http://refhub.elsevier.com/S1552-5260(18)30099-2/sref3
http://refhub.elsevier.com/S1552-5260(18)30099-2/sref3
http://refhub.elsevier.com/S1552-5260(18)30099-2/sref3
http://refhub.elsevier.com/S1552-5260(18)30099-2/sref4
http://refhub.elsevier.com/S1552-5260(18)30099-2/sref4
http://refhub.elsevier.com/S1552-5260(18)30099-2/sref4
http://refhub.elsevier.com/S1552-5260(18)30099-2/sref4
http://refhub.elsevier.com/S1552-5260(18)30099-2/sref5
http://refhub.elsevier.com/S1552-5260(18)30099-2/sref5
http://refhub.elsevier.com/S1552-5260(18)30099-2/sref5
http://refhub.elsevier.com/S1552-5260(18)30099-2/sref5
http://refhub.elsevier.com/S1552-5260(18)30099-2/sref5
http://refhub.elsevier.com/S1552-5260(18)30099-2/sref6
http://refhub.elsevier.com/S1552-5260(18)30099-2/sref6
http://refhub.elsevier.com/S1552-5260(18)30099-2/sref7
http://refhub.elsevier.com/S1552-5260(18)30099-2/sref7
http://refhub.elsevier.com/S1552-5260(18)30099-2/sref7
http://refhub.elsevier.com/S1552-5260(18)30099-2/sref7
http://refhub.elsevier.com/S1552-5260(18)30099-2/sref7
http://refhub.elsevier.com/S1552-5260(18)30099-2/sref7
http://refhub.elsevier.com/S1552-5260(18)30099-2/sref8
http://refhub.elsevier.com/S1552-5260(18)30099-2/sref8
http://refhub.elsevier.com/S1552-5260(18)30099-2/sref8
http://refhub.elsevier.com/S1552-5260(18)30099-2/sref8
https://doi.org/10.1016/j.jalz.2018.03.006

	Magnetic resonance imaging-based hippocampus volume for prediction of dementia in mild cognitive impairment: Why does the m ...
	References


